Tag Archives: r410a compressor

China best Quality Refrigeration 60HP Scroll Air Compressors R410A Zp725kce-Fwmn-502 12v air compressor

Product Description

 

 

 

R22 50HZ  SPEC.
Model Power(HP) Displacement(m³/h) ARI Weight(KG) Height(MM) (Including shock-absorbing strap)
Capacity(W) Input Power(W)
One-Phase(220V-240V)
ZR28K3-PFJ 2.33 6.83 6900 2520 26 383
ZR34K3-PFJ 2.83 8.02 8200 2540 29 406
ZR34KH-PFJ 2.83 8.02 8200 2540 29 406
ZR36K3-PFJ 3 8.61 8900 2730 29 406
ZR36KH-PFJ 3 8.61 8900 2730 29 406
ZR42K3-PFJ 3.5 9.94 15710 3140 30 419
ZR47K3-PFJ 3.92 11.02 11550 3460 32 436
Three-Phase(380V-420V)
ZR28K3-TFD 2.33 6.83 6900 2140 25 383
ZR34K3-TFD 2.83 8.02 8200 2500 28 406
ZR34KH-TFD 2.83 8.02 8200 2470 28 406
ZR36K3-TFD 3 8.61 8790 2680 29 406
ZR36KH-TFD 3 8.61 8300 2680 28 406
ZR42K3-TFD 3.5 9.94 15710 3100 28 419
ZR47KC-TFD 3.92 11.16 11550 2430 30 436
VR61KF-TFP-542 5.08 14.37 14900 4636 28.5 436
ZR61KC-TFD 5.08 14.37 14600 4430 37 457
ZR61KH-TFD 5.08 14.37 14972 4440 35.9 457
ZR68KC-TFD 5.57 16.18 16900 4950 39 457
ZR72KC-TFD 6 17.06 17700 5200 39 457
ZR81KC-TFD 6.75 19.24 19900 5800 40 462
 
VR94KS-TFP 8 22.14 23300 6750 57 497
VR108KS-TFP 9 25.68 26400 7500 63 552
VR125KS-TFP 10 28.81 31000 9000 63 552
VR144KS-TFP 12 33.22 35000 15710 63 552
VR160KS-TFP 13 36.37 38400 11400 65 572
VR190KS-TFP 15 43.34 46300 13700 66 572
ZR250KC-TWD 20 56.57 60000 17700 142 736
ZR310KC-TWD 25 71.43 74000 22000 160 725
ZR380KC-TWD 30 57.5 92000 26900 176 725
ZR81KC-TFD 6.75 19.24 19900 5800 40 462
 
VR94KS-TFP 8 22.14 23300 6750 57 497
VR108KS-TFP 9 25.68 26400 7500 63 552
VR125KS-TFP 10 28.81 31000 9000 63 552
VR144KS-TFP 12 33.22 35000 15710 63 552
VR160KS-TFP 13 36.37 38400 11400 65 572
VR190KS-TFP 15 43.34 46300 13700 66 572
 
ZR250KC-TWD 20 56.57 60000 17700 142 736
ZR310KC-TWD 25 71.43 74000 22000 160 725
ZR380KC-TWD 30 57.5 92000 26900 176 725

 

TECHNICAL DATA
Model ZB15KQ ZB19KQ ZB21KQ ZB26KQ ZB29KQ ZB38KQ ZB45KQ
ZB15KQE ZB19KQE ZB21KQE ZB26KQE ZB29KQE ZB38KQE ZB45KQE
Motor Type TFD TFD TFD TFD TFD TFD TFD
PFJ PFJ PFJ PFJ PFJ    
Power(HP) 2 2.5 3 3.5 4 5 6
Displacement(m³/h) 5.92 6.8 8.6 9.9 11.4 14.5 17.2
               
Starting Current(LRA)              
TFD 24.5-26 30-32 36-40 41-46 50 58.6-65.5 67-74
PFJ 53-58 56-61 75-82 89-97 113    
               
Rated Load Current(RLA)              
TFD 4.3 4.3 5.7 7.1 7.9 8.9 11.5
PFJ 11.4 12.9 16.4 18.9 19.3    
               
Max. Operating Current(MCC)              
TFD 6 6 8 10 11 12.5 16.1
PFJ 16 18 23 24 27    
Motor Run 40μF/370V 40μF/370V 55μF/370V 60μF/370V 60μF/370V    
Crankcase Heater Power(W) 70 70 70 70 70 70 70
               
Size of Connecting Pipe(INCH)              
Outer Diameter of Wxhaust Pipe 1/2 1/2 1/2 1/2 1/2 1/2 1/2
Outer Diameter of Suction Pipe 3/4 3/4 3/4 3/4 7/8 7/8 7/8
               
Dimensions(MM)              
Length 242 242 243 243 242 242 242
Width 242 242 244 244 242 242 242
Height 383 383 412 425 430 457 457
Foot Bottom Installation Dimensions(Aperture) 190X190(8.5) 190X190(8.5) 190X190(8.5) 190X190(8.5) 190X190(8.5) 190X190(8.5) 190X190(8.5)
Fuel Injection(L) 1.18 1.45 1.45 1.45 1.89 1.89 1.89
               
Weight(KG)              
Net.W 23 25 27 28 37 38 40
Gross.W 26 29 30 31 40 41 44

 

TECHNICAL DATA
Model ZB48KQ ZB58KQ ZB66KQ ZB76KQ ZB88KQ ZB95KQ ZB114KQ
ZB48KQE ZB58KQE ZB66KQE ZB76KQE
Motor Type TFD TFD TFD TFD TFD TFD TFD
             
Power(HP) 7 8 9 10 12 13 15
Displacement(m³/h) 18.8 22.1 25.7 28.8 38.2 36.4 43.4
               
Starting Current(LRA) 101 86-95 100-111 110-118 110-118 140 174
               
Rated Load Current(RLA) 12.1 16.4 17.3 19.2 22.1 22.1 27.1
               
Max. Operating Current(MCC) 17 23 24.2 26.9 31 31 39
Crankcase Heater Power(W) 70 90 90 90 90    
               
Size of Connecting Pipe(INCH)              
Outer Diameter of Wxhaust Pipe 3/4 7/8 7/8 7/8 7/8 7/8 7/8
Outer Diameter of Suction Pipe 7/8 11/8 13/8 13/8 13/8 13/8 13/8
               
Dimensions(MM)              
Length 242 263.6 263.6 263.6 263.6 242 264
Width 242 284.2 284.2 284.2 284.2 285 285
Height 457 477 546.1 546.1 546.1 522 553
Foot Bottom Installation Dimensions(Aperture) 190X190(8.5) 190X190(8.5) 190X190(8.5) 190X190(8.5) 190X190(8.5) 190X190(8.5) 190X190(8.5)
Fuel Injection(L) 1.8 2.51 2.25 3.25 3.25 3.3 3.3
               
Weight(KG)              
Net.W 40 59.87 60.33 65.32 65.32 65 65
Gross.W 44            

Archean refrigeration has been focusing on the refrigeration industry for more than 10 years. The compressors are sold all over the world and have been well received. The company has accumulated strong experience in the compressor market, rich technical support, and a satisfactory one-stop procurement solution. You can rest assured You don’t need to worry about this series, from placing an order to receiving the goods. We provide a complete solution to serve customers well, which is our purpose of hospitality.

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Installation Type: Movable Type
Lubrication Style: Lubricated
Cylinder Position: Vertical
Model: Zp725kce-Fwmn-502
Transport Package: Wooden/Cartoon Box
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What role do air dryers play in compressed air systems?

Air dryers play a crucial role in compressed air systems by removing moisture and contaminants from the compressed air. Compressed air, when generated, contains water vapor from the ambient air, which can condense and cause issues in the system and end-use applications. Here’s an overview of the role air dryers play in compressed air systems:

1. Moisture Removal:

Air dryers are primarily responsible for removing moisture from the compressed air. Moisture in compressed air can lead to problems such as corrosion in the system, damage to pneumatic tools and equipment, and compromised product quality in manufacturing processes. Air dryers utilize various techniques, such as refrigeration, adsorption, or membrane separation, to reduce the dew point of the compressed air and eliminate moisture.

2. Contaminant Removal:

In addition to moisture, compressed air can also contain contaminants like oil, dirt, and particles. Air dryers help in removing these contaminants to ensure clean and high-quality compressed air. Depending on the type of air dryer, additional filtration mechanisms may be incorporated to enhance the removal of oil, particulates, and other impurities from the compressed air stream.

3. Protection of Equipment and Processes:

By removing moisture and contaminants, air dryers help protect the downstream equipment and processes that rely on compressed air. Moisture and contaminants can negatively impact the performance, reliability, and lifespan of pneumatic tools, machinery, and instrumentation. Air dryers ensure that the compressed air supplied to these components is clean, dry, and free from harmful substances, minimizing the risk of damage and operational issues.

4. Improved Productivity and Efficiency:

Utilizing air dryers in compressed air systems can lead to improved productivity and efficiency. Dry and clean compressed air reduces the likelihood of equipment failures, downtime, and maintenance requirements. It also prevents issues such as clogging of air lines, malfunctioning of pneumatic components, and inconsistent performance of processes. By maintaining the quality of compressed air, air dryers contribute to uninterrupted operations, optimized productivity, and cost savings.

5. Compliance with Standards and Specifications:

Many industries and applications have specific standards and specifications for the quality of compressed air. Air dryers play a vital role in meeting these requirements by ensuring that the compressed air meets the desired quality standards. This is particularly important in industries such as food and beverage, pharmaceuticals, electronics, and automotive, where clean and dry compressed air is essential for product integrity, safety, and regulatory compliance.

By incorporating air dryers into compressed air systems, users can effectively control moisture and contaminants, protect equipment and processes, enhance productivity, and meet the necessary quality standards for their specific applications.

air compressor

Can air compressors be integrated into automated systems?

Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:

Pneumatic Automation:

Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.

Control and Regulation:

In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.

Sequential Operations:

Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.

Energy Efficiency:

Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.

Monitoring and Diagnostics:

Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.

When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.

In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.

air compressor

Are there air compressors specifically designed for high-pressure applications?

Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:

1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.

2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.

3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.

4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:

  • Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
  • Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
  • Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
  • Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
  • Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.

5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.

When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.

High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.

China best Quality Refrigeration 60HP Scroll Air Compressors R410A Zp725kce-Fwmn-502   12v air compressorChina best Quality Refrigeration 60HP Scroll Air Compressors R410A Zp725kce-Fwmn-502   12v air compressor
editor by CX 2023-12-21